Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167029, 2024 03.
Article in English | MEDLINE | ID: mdl-38325224

ABSTRACT

High fructose diets are associated with an increased risk of liver cancer. Previous studies in mice suggest increased lipogenesis is a key mechanism linking high fructose diets to liver tumour growth. However, these studies administered fructose to mice at supraphysiological levels. The aim of this study was to determine whether liver tumour growth and lipogenesis were altered in mice fed fructose at physiological levels. To test this, we injected male C57BL/6 mice with the liver carcinogen diethylnitrosamine and then fed them diets without fructose or fructose ranging from 10 to 20 % total calories. Results showed mice fed diets with ≥15 % fructose had significantly increased liver tumour numbers (2-4-fold) and total tumour burden (∼7-fold) vs mice fed no-fructose diets. However, fructose-associated tumour burden was not associated with lipogenesis. Conversely, unbiased metabolomic analyses revealed bile acids were elevated in the sera of mice fed a 15 % fructose diet vs mice fed a no-fructose diet. Using a syngeneic ectopic liver tumour model, we show that ursodeoxycholic acid, which decreases systemic bile acids, significantly reduced liver tumour growth in mice fed the 15 % fructose diet but not mice fed a no-fructose diet. These results point to a novel role for systemic bile acids in mediating liver tumour growth associated with a high fructose diet. Overall, our study shows fructose intake at or above normal human consumption (≥15 %) is associated with increased liver tumour numbers and growth and that modulating systemic bile acids inhibits fructose-associated liver tumour growth in mice.


Subject(s)
Bile Acids and Salts , Liver Neoplasms , Humans , Mice , Male , Animals , Fructose/adverse effects , Mice, Inbred C57BL , Liver Neoplasms/chemically induced
2.
Nutrients ; 16(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38201904

ABSTRACT

There are no ideal non-invasive tests for assessing the severity of liver fibrosis in people with metabolic dysfunction-associated steatotic liver disease (MASLD) and class 3 obesity, where body habitus often makes imaging technically challenging. This study aimed to assess the applicability and diagnostic performance of two-dimensional shear wave elastography (2D-SWE), alongside several serum-based liver fibrosis scoring methods, in individuals with class 3 obesity. A cross-sectional study was conducted in patients aged ≥18 years and with a body mass index (BMI) ≥ 40 kg/m2 who were participants in a publicly funded multidisciplinary weight management program in South Western Sydney. The 2D-SWE was performed using the ElastQ Imaging (EQI) procedure with the Phillips EPIQ Elite series ultrasound. An EQI Median value of ≥6.43 kPa was taken as a cutoff score for significant fibrosis, and the scan was considered valid when the liver EQI IQR/Med value was <30%. The Fibrosis-4 (FIB-4) index, AST-to-platelet ratio index (APRI), NAFLD fibrosis score (NFS), and circulating fibroblast activation protein index (FAP index) were calculated from fasting blood samples. The participants (n = 116; 67.2% female) were aged 47.2 ± 12.9 years, with BMI 54.5 ± 11.0 kg/m2. EQI Median values were obtained for 97.4% (113/116) of the 2D-SWE scans, and 91.4% (106/116) of the scans were considered valid. The EQI Median values exhibited a moderately positive correlation with the FIB-4 index (r = 0.438; p < 0.001) and a weakly positive correlation with the APRI (r = 0.388; p < 0.001), NFS (r = 0.210; p = 0.036) and FAP index (r = 0.226; p = 0.020). All liver fibrosis scores were positively correlated with one another. Among those referred for a liver biopsy based on the 2D-SWE and serum scores, half (11/22) underwent liver biopsy, and their 2D-SWE scores exhibited 72.7% accuracy (sensitivity: 71.4%; specificity: 75%) in detecting significant fibrosis. Our results show that 2D-SWE is a feasible, non-invasive test to assess liver fibrosis among people with class 3 obesity. Further research is needed to assess how 2D-SWE can be used alongside existing serum-based risk scores to reliably detect significant fibrosis, which would potentially reduce the need for invasive liver biopsy.


Subject(s)
Elasticity Imaging Techniques , Adult , Humans , Female , Adolescent , Male , Cross-Sectional Studies , Risk Factors , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/etiology , Obesity/complications
3.
Oncogenesis ; 11(1): 67, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36333295

ABSTRACT

Hepatocellular carcinoma (HCC) accounts for 90% of primary liver cancer, the third leading cause of cancer-associated death worldwide. With the increasing prevalence of metabolic conditions, non-alcoholic fatty liver disease (NAFLD) is emerging as the fastest-growing HCC risk factor, and it imposes an additional layer of difficulty in HCC management. Dysregulated hepatic lipids are generally believed to constitute a deleterious environment cultivating the development of NAFLD-associated HCC. However, exactly which lipids or lipid regulators drive this process remains elusive. We report herein that sphingosine kinase 2 (SphK2), a key sphingolipid metabolic enzyme, plays a critical role in NAFLD-associated HCC. Ablation of Sphk2 suppressed HCC development in NAFLD livers via inhibition of hepatocyte proliferation both in vivo and in vitro. Mechanistically, SphK2 deficiency led to downregulation of ceramide transfer protein (CERT) that, in turn, decreased the ratio of pro-cancer sphingomyelin (SM) to anti-cancer ceramide. Overexpression of CERT restored hepatocyte proliferation, colony growth and cell cycle progression. In conclusion, the current study demonstrates that SphK2 is an essential lipid regulator in NAFLD-associated HCC, providing experimental evidence to support clinical trials of SphK2 inhibitors as systemic therapies against HCC.

4.
Sci Immunol ; 7(75): eabi4611, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36112693

ABSTRACT

Dipeptidyl peptidase 9 (DPP9) is a direct inhibitor of NLRP1, but how it affects inflammasome regulation in vivo is not yet established. Here, we report three families with immune-associated defects, poor growth, pancytopenia, and skin pigmentation abnormalities that segregate with biallelic DPP9 rare variants. Using patient-derived primary cells and biochemical assays, these variants were shown to behave as hypomorphic or knockout alleles that failed to repress NLRP1. The removal of a single copy of Nlrp1a/b/c, Asc, Gsdmd, or Il-1r, but not Il-18, was sufficient to rescue the lethality of Dpp9 mutant neonates in mice. Similarly, dpp9 deficiency was partially rescued by the inactivation of asc, an obligate downstream adapter of the NLRP1 inflammasome, in zebrafish. These experiments suggest that the deleterious consequences of DPP9 deficiency were mostly driven by the aberrant activation of the canonical NLRP1 inflammasome and IL-1ß signaling. Collectively, our results delineate a Mendelian disorder of DPP9 deficiency driven by increased NLRP1 activity as demonstrated in patient cells and in two animal models of the disease.


Subject(s)
Apoptosis Regulatory Proteins , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Inflammasomes , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Inflammasomes/metabolism , Interleukin-1/metabolism , NLR Proteins/genetics , Zebrafish
5.
EMBO Rep ; 23(10): e54136, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35912982

ABSTRACT

N-terminal sequences are important sites for post-translational modifications that alter protein localization, activity, and stability. Dipeptidyl peptidase 9 (DPP9) is a serine aminopeptidase with the rare ability to cleave off N-terminal dipeptides with imino acid proline in the second position. Here, we identify the tumor-suppressor BRCA2 as a DPP9 substrate and show this interaction to be induced by DNA damage. We present crystallographic structures documenting intracrystalline enzymatic activity of DPP9, with the N-terminal Met1-Pro2 of a BRCA21-40 peptide captured in its active site. Intriguingly, DPP9-depleted cells are hypersensitive to genotoxic agents and are impaired in the repair of DNA double-strand breaks by homologous recombination. Mechanistically, DPP9 targets BRCA2 for degradation and promotes the formation of RAD51 foci, the downstream function of BRCA2. N-terminal truncation mutants of BRCA2 that mimic a DPP9 product phenocopy reduced BRCA2 stability and rescue RAD51 foci formation in DPP9-deficient cells. Taken together, we present DPP9 as a regulator of BRCA2 stability and propose that by fine-tuning the cellular concentrations of BRCA2, DPP9 alters the BRCA2 interactome, providing a possible explanation for DPP9's role in cancer.


Subject(s)
DNA Repair , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Aminopeptidases , DNA , DNA Damage , Dipeptides , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Proline , Rad51 Recombinase/genetics , Serine
6.
Molecules ; 27(3)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35163991

ABSTRACT

A diet-induced non-alcoholic fatty liver disease (NAFLD) model causing obesity in rodents was used to examine whether sitagliptin and gliclazide therapies have similar protective effects on pathological liver change. METHODS: Male mice were fed a high-fat diet (HFD) or standard chow (Chow) ad libitum for 25 weeks and randomly allocated to oral sitagliptin or gliclazide treatment for the final 10 weeks. Fasting blood glucose and circulating insulin were measured. Inflammatory and fibrotic liver markers were assessed by qPCR. The second messenger ERK and autophagy markers were examined by Western immunoblot. F4/80, collagens and CCN2 were assessed by immunohistochemistry (IHC). RESULTS: At termination, HFD mice were obese, hyperinsulinemic and insulin-resistant but non-diabetic. The DPP4 inhibitor sitagliptin prevented intrahepatic induction of pro-fibrotic markers collagen-IV, collagen-VI, CCN2 and TGF-ß1 and pro-inflammatory markers TNF-α and IL-1ß more effectively than sulfonylurea gliclazide. By IHC, liver collagen-VI and CCN2 induction by HFD were inhibited only by sitagliptin. Sitagliptin had a greater ability than gliclazide to normalise ERK-protein liver dysregulation. CONCLUSION: These data indicate that sitagliptin, compared with gliclazide, exhibits greater inhibition of pro-fibrotic and pro-inflammatory changes in an HFD-induced NAFLD model. Sitagliptin therapy, even in the absence of diabetes, may have specific benefits in diet-induced NAFLD.


Subject(s)
Diet, High-Fat/adverse effects , Gliclazide/pharmacology , Inflammation/prevention & control , Liver Cirrhosis/prevention & control , Non-alcoholic Fatty Liver Disease/drug therapy , Sitagliptin Phosphate/pharmacology , Animals , Hypoglycemic Agents/pharmacology , Inflammation/etiology , Inflammation/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/pathology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology
7.
J Cell Commun Signal ; 16(3): 447-460, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35038159

ABSTRACT

Type 2 diabetes is an independent risk factor for non-alcoholic steatohepatitis (NASH) progression and its mediators have not been resolved. In this study, a pathogenic role of cellular communication network factor 2 (CCN2) protein in NASH pathology, was investigated in an established preclinical NASH model. Male wild type C57BL/6 mice received either Chow or high fat diet (HFD) for 26 weeks, with some mice in each group randomly selected to receive low dose streptozotocin (STZ: 3 i.p. injections, 65 mg/kg) at 15 weeks to induce type 2 diabetes. In the final 10 of the 26 weeks mice from each group were administered i.p. either rabbit anti-CCN2 neutralizing antibody (CCN2Ab) or as control normal rabbit IgG, at a dose of 150 µg per mouse twice/week. NASH developed in the HFD plus diabetes (HFD+DM) group. Administration of CCN2Ab significantly downregulated collagen I and collagen III mRNA induction and prevented pro-inflammatory MCP-1 mRNA induction in HFD+DM mice. At the protein level, CCN2Ab significantly attenuated collagen accumulation by PSR stain and collagen I protein induction in HFD+DM. Phosphorylation of the pro-fibrotic ERK signalling pathway in liver in HFD+DM was attenuated by CCN2Ab treatment. Intrahepatic CCN1 mRNA was induced, whereas CCN3 was downregulated at both the mRNA and protein levels in HFD+DM. CCN3 down-regulation was prevented by CCN2Ab treatment. This in vivo study indicates that CCN2 is a molecular target in NASH with high fat diet and diabetes, and that regulation of ERK signalling is implicated in this process.

8.
Clin Transl Gastroenterol ; 13(1): e00452, 2022 01 19.
Article in English | MEDLINE | ID: mdl-35060938

ABSTRACT

INTRODUCTION: Dipeptidyl peptidase (DPP)-4 is part of a larger family of proteases referred to as DPPs. DPP4 has been suggested as a possible biomarker for inflammatory bowel disease (IBD). Circulating DPP4 (cDPP4) enzyme activity was investigated as a potential biomarker for IBD. In addition, DPP enzyme activity and gene expression were quantified in colonic tissue of patients with IBD and non-IBD. METHODS: In study 1, DPP enzyme activity was quantified in plasma samples from 220 patients with IBD (Crohn's disease [CD] n = 130 and ulcerative colitis [UC] n = 90) and non-IBD controls (n = 26) using a colorimetric assay. In study 2, tissue and plasma samples were collected from 26 patients with IBD and 20 non-IBD controls. Plasma C-reactive protein (CRP) was quantified in all patients. Colonic DPP4, DPP8, DPP9, and fibroblast activation protein (FAP) gene expression was determined by quantitative polymerase chain reaction. cDPP and cFAP enzyme activity was also measured. Sensitivity and specificity were determined by receiver operating characteristic curve analysis. RESULTS: In study 1, total cDPP activity was found to differentiate patients with CD with active disease (n = 18) from those in remission (n = 19; sensitivity 78% and specificity 63%). In study 2, total cDPP and cFAP activity was 28% and 48% lower in patients with elevated CRP (>10 mg/L), respectively, compared with patients with normal CRP. Gene expression of DPP4, FAP, and DPP8 was also significantly higher in colonic biopsies from patients with IBD compared with non-IBD patients (P < 0.05). DISCUSSION: Our findings implicate the DPP enzyme family in intestinal inflammation and suggest future biomarker applications to differentiate the pathophysiological aspects of IBD.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Biomarkers , C-Reactive Protein/analysis , Colitis, Ulcerative/diagnosis , Crohn Disease/diagnosis , Humans , Inflammatory Bowel Diseases/diagnosis
9.
Front Physiol ; 12: 755124, 2021.
Article in English | MEDLINE | ID: mdl-34803738

ABSTRACT

Tobacco smoking increases the risk of metabolic disorders due to the combination of harmful chemicals, whereas pure nicotine can improve glucose tolerance. E-cigarette vapour contains nicotine and some of the harmful chemicals found in cigarette smoke at lower levels. To investigate how e-vapour affects metabolic profiles, male Balb/c mice were exposed to a high-fat diet (HFD, 43% fat, 20kJ/g) for 16weeks, and e-vapour in the last 6weeks. HFD alone doubled fat mass and caused dyslipidaemia and glucose intolerance. E-vapour reduced fat mass in HFD-fed mice; only nicotine-containing e-vapour improved glucose tolerance. In chow-fed mice, e-vapour increased lipid content in both blood and liver. Changes in liver metabolic markers may be adaptive responses rather than causal. Future studies can investigate how e-vapour differentially affects metabolic profiles with different diets.

10.
Cancers (Basel) ; 13(21)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34771657

ABSTRACT

The mRNA expression of the dipeptidyl peptidase 4 (DPP4) gene family is highly upregulated in human hepatocellular carcinoma (HCC) and is associated with poor survival in HCC patients. Compounds that inhibit the DPP4 enzyme family, such as talabostat and ARI-4175, can mediate tumour regression by immune-mediated mechanisms that are believed to include NLRP1 activation. This study investigated the expression and activity of the DPP4 family during the development of HCC and evaluated the efficacy of ARI-4175 in the treatment of early HCC in mice. This first report on this enzyme family in HCC-bearing mice showed DPP9 upregulation in HCC, whereas intrahepatic DPP8/9 and DPP4 enzyme activity levels decreased with age. We demonstrated that ARI-4175 significantly lowered the total number of macroscopic liver nodules in these mice. In addition, ARI-4175 increased intrahepatic inflammatory cell infiltration, including CD8+ T cell numbers, into the HCC-bearing livers. Furthermore, ARI-4175 activated a critical component of the inflammasome pathway, caspase-1, in these HCC-bearing livers. This is the first evidence of caspase-1 activation by a pan-DPP inhibitor in the liver. Our data suggest that targeting the DPP4 enzyme family may be a novel and effective approach to promote anti-tumour immunity in HCC via caspase-1 activation.

11.
Cancers (Basel) ; 13(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915844

ABSTRACT

Dipeptidyl peptidase (DPP) 9, DPP8, DPP4 and fibroblast activation protein (FAP) are the four enzymatically active members of the S9b protease family. Associations of DPP9 with human liver cancer, exonic single nucleotide polymorphisms (SNPs) in DPP9 and loss of function (LoF) variants have not been explored. Human genomic databases, including The Cancer Genome Atlas (TCGA), were interrogated to identify DPP9 LoF variants and associated cancers. Survival and gene signature analyses were performed on hepatocellular carcinoma (HCC) data. We found that DPP9 and DPP8 are intolerant to LoF variants. DPP9 exonic LoF variants were most often associated with uterine carcinoma and lung carcinoma. All four DPP4-like genes were overexpressed in liver tumors and their joint high expression was associated with poor survival in HCC. Increased DPP9 expression was associated with obesity in HCC patients. High expression of genes that positively correlated with overexpression of DPP4, DPP8, and DPP9 were associated with very poor survival in HCC. Enriched pathways analysis of these positively correlated genes featured Toll-like receptor and SUMOylation pathways. This comprehensive data mining suggests that DPP9 is important for survival and that the DPP4 protease family, particularly DPP9, is important in the pathogenesis of human HCC.

12.
Protein Expr Purif ; 181: 105833, 2021 05.
Article in English | MEDLINE | ID: mdl-33524496

ABSTRACT

Fibroblast activation protein alpha (FAP) is a cell-surface expressed type II glycoprotein that has a unique proteolytic activity. FAP has active soluble forms that retain the extracellular portion but lack the transmembrane domain and cytoplasmic tail. FAP expression is normally very low in adult tissue but is highly expressed by activated fibroblasts in sites of tissue remodelling. Thus, FAP is a potential biomarker and pharmacological target in liver fibrosis, atherosclerosis, cardiac fibrosis, arthritis and cancer. Understanding the biological significance of FAP by investigating protein structure, interactions and activities requires reliable methods for the production and purification of abundant pure and stable protein. We describe an improved production and purification protocol for His6-tagged recombinant soluble human FAP. A modified baculovirus expression construct was generated using the pFastBac1 vector and the gp67 secretion signal to produce abundant active soluble recombinant human FAP (residues 27-760) in insect cells. The FAP purification protocol employed ammonium sulphate precipitation, ion exchange chromatography, immobilised metal affinity chromatography and ultrafiltration. High purity was achieved, as judged by gel electrophoresis and specific activity. The purified 82 kDa FAP protein was specifically inhibited by a FAP selective inhibitor, ARI-3099, and was inhibited by zinc with an IC50 of 25 µM. Our approach could be adopted for producing the soluble portions of other type II transmembrane glycoproteins to study their structure and function.


Subject(s)
Endopeptidases , Membrane Proteins , Animals , Endopeptidases/biosynthesis , Endopeptidases/chemistry , Endopeptidases/genetics , Endopeptidases/isolation & purification , Humans , Membrane Proteins/biosynthesis , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/isolation & purification , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Sf9 Cells , Spodoptera
13.
Cancers (Basel) ; 13(3)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513866

ABSTRACT

Immunity plays a key role in epithelial ovarian cancer (EOC) progression with a well-documented correlation between patient survival and high intratumoral CD8+ to T regulatory cell (Treg) ratios. We previously identified dysregulated DPP4 activity in EOCs as a potentially immune-disruptive influence contributing to a reduction in CXCR3-mediated T-cell infiltration in solid tumours. We therefore hypothesized that inhibition of DPP4 activity by sitagliptin, an FDA-approved inhibitor, would improve T-cell infiltration and function in a syngeneic ID8 mouse model of EOC. Daily oral sitagliptin at 50 mg/kg was provided to mice with established primary EOCs. Sitagliptin treatment decreased metastatic tumour burden and significantly increased overall survival and was associated with significant changes to the immune landscape. Sitagliptin increased overall CXCR3-mediated CD8+ T-cell trafficking to the tumour and enhanced the activation and proliferation of CD8+ T-cells in tumour tissue and the peritoneal cavity. Substantial reductions in suppressive cytokines, including CCL2, CCL17, CCL22 and IL-10, were also noted and were associated with reduced CD4+ CD25+ Foxp3+ Treg recruitment in the tumour. Combination therapy with paclitaxel, however, typical of standard-of-care for patients in palliative care, abolished CXCR3-specific T-cell recruitment stimulated by sitagliptin. Our data suggest that sitagliptin may be suitable as an adjunct therapy for patients between chemotherapy cycles as a novel approach to enhance immunity, optimise T-cell-mediated function and improve overall survival.

14.
Cardiovasc Res ; 117(4): 1060-1069, 2021 03 21.
Article in English | MEDLINE | ID: mdl-32402085

ABSTRACT

AIMS: Fibroblast activation protein (FAP) is upregulated at sites of tissue remodelling including chronic arthritis, solid tumours, and fibrotic hearts. It has also been associated with human coronary atherosclerotic plaques. Yet, the causal role of FAP in atherosclerosis remains unknown. To investigate the cause-effect relationship of endogenous FAP in atherogenesis, we assessed the effects of constitutive Fap deletion on plaque formation in atherosclerosis-prone apolipoprotein E (Apoe) or low-density lipoprotein receptor (Ldlr) knockout mice. METHODS AND RESULTS: Using en face analyses of thoraco-abdominal aortae and aortic sinus cross-sections, we demonstrate that Fap deficiency decreased plaque formation in two atherosclerotic mouse models (-46% in Apoe and -34% in Ldlr knockout mice). As a surrogate of plaque vulnerability fibrous cap thickness was used; it was increased in Fap-deficient mice, whereas Sirius red staining demonstrated that total collagen content remained unchanged. Using polarized light, atherosclerotic lesions from Fap-deficient mice displayed increased FAP targets in terms of enhanced collagen birefringence in plaques and increased pre-COL3A1 expression in aortic lysates. Analyses of the Stockholm Atherosclerosis Gene Expression data revealed that FAP expression was increased in human atherosclerotic compared to non-atherosclerotic arteries. CONCLUSIONS: Our data provide causal evidence that constitutive Fap deletion decreases progression of experimental atherosclerosis and increases features of plaque stability with decreased collagen breakdown. Thus, inhibition of FAP expression or activity may not only represent a promising therapeutic target in atherosclerosis but appears safe at the experimental level for FAP-targeted cancer therapies.


Subject(s)
Aorta/enzymology , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Endopeptidases/deficiency , Membrane Proteins/deficiency , Vascular Remodeling , Animals , Aorta/pathology , Aortic Diseases/enzymology , Aortic Diseases/genetics , Aortic Diseases/pathology , Atherosclerosis/enzymology , Atherosclerosis/genetics , Atherosclerosis/pathology , Case-Control Studies , Collagen/genetics , Collagen/metabolism , Disease Models, Animal , Endopeptidases/genetics , Fibrosis , Gene Deletion , Humans , Lipids/blood , Male , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout, ApoE , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/pathology , Plaque, Atherosclerotic , Proteome , Receptors, LDL/deficiency , Receptors, LDL/genetics , Transcriptome
15.
Int J Mol Sci ; 21(21)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143089

ABSTRACT

The treatment of ovarian cancer has not significantly changed in decades and it remains one of the most lethal malignancies in women. The serine protease dipeptidyl peptidase 4 (DPP4) plays key roles in metabolism and immunity, and its expression has been associated with either pro- or anti-tumour effects in multiple tumour types. In this study, we provide the first evidence that DPP4 expression and enzyme activity are uncoupled under hypoxic conditions in ovarian cancer cells. Whilst we identified strong up-regulation of DPP4 mRNA expression under hypoxic growth, the specific activity of secreted DPP4 was paradoxically decreased. Further investigation revealed matrix metalloproteinases (MMP)-dependent inactivation and proteolytic shedding of DPP4 from the cell surface, mediated by at least MMP10 and MMP13. This is the first report of uncoupled DPP4 expression and activity in ovarian cancer cells, and suggests a previously unrecognized, cell- and tissue-type-dependent mechanism for the regulation of DPP4 in solid tumours. Further studies are necessary to identify the functional consequences of DPP4 processing and its potential prognostic or therapeutic value.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Hypoxia/physiopathology , Ovarian Neoplasms/pathology , Peptide Hydrolases/metabolism , Proteolysis , Serine Endopeptidases/metabolism , Female , Humans , Ovarian Neoplasms/metabolism , Signal Transduction
16.
Molecules ; 25(22)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33218025

ABSTRACT

Proteases catalyse irreversible posttranslational modifications that often alter a biological function of the substrate. The protease dipeptidyl peptidase 4 (DPP4) is a pharmacological target in type 2 diabetes therapy primarily because it inactivates glucagon-like protein-1. DPP4 also has roles in steatosis, insulin resistance, cancers and inflammatory and fibrotic diseases. In addition, DPP4 binds to the spike protein of the MERS virus, causing it to be the human cell surface receptor for that virus. DPP4 has been identified as a potential binding target of SARS-CoV-2 spike protein, so this question requires experimental investigation. Understanding protein structure and function requires reliable protocols for production and purification. We developed such strategies for baculovirus generated soluble recombinant human DPP4 (residues 29-766) produced in insect cells. Purification used differential ammonium sulphate precipitation, hydrophobic interaction chromatography, dye affinity chromatography in series with immobilised metal affinity chromatography, and ion-exchange chromatography. The binding affinities of DPP4 to the SARS-CoV-2 full-length spike protein and its receptor-binding domain (RBD) were measured using surface plasmon resonance and ELISA. This optimised DPP4 purification procedure yielded 1 to 1.8 mg of pure fully active soluble DPP4 protein per litre of insect cell culture with specific activity >30 U/mg, indicative of high purity. No specific binding between DPP4 and CoV-2 spike protein was detected by surface plasmon resonance or ELISA. In summary, a procedure for high purity high yield soluble human DPP4 was achieved and used to show that, unlike MERS, SARS-CoV-2 does not bind human DPP4.


Subject(s)
Angiotensin-Converting Enzyme 2/isolation & purification , Dipeptidyl Peptidase 4/isolation & purification , Spike Glycoprotein, Coronavirus/isolation & purification , Angiotensin-Converting Enzyme 2/biosynthesis , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Cloning, Molecular , Dipeptidyl Peptidase 4/biosynthesis , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl Peptidase 4/genetics , Enzyme-Linked Immunosorbent Assay , Gene Expression , Humans , Kinetics , Models, Molecular , Plasmids/chemistry , Plasmids/metabolism , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sf9 Cells , Spike Glycoprotein, Coronavirus/biosynthesis , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spodoptera , Surface Plasmon Resonance
17.
J Diabetes ; 12(9): 649-658, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32394639

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is caused by a novel betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), similar to SARS-CoV and Middle East respiratory syndrome (MERS-CoV), which cause acute respiratory distress syndrome and case fatalities. COVID-19 disease severity is worse in older obese patients with comorbidities such as diabetes, hypertension, cardiovascular disease, and chronic lung disease. Cell binding and entry of betacoronaviruses is via their surface spike glycoprotein; SARS-CoV binds to the metalloprotease angiotensin-converting enzyme 2 (ACE2), MERS-CoV utilizes dipeptidyl peptidase 4 (DPP4), and recent modeling of the structure of SARS-CoV-2 spike glycoprotein predicts that it can interact with human DPP4 in addition to ACE2. DPP4 is a ubiquitous membrane-bound aminopeptidase that circulates in plasma; it is multifunctional with roles in nutrition, metabolism, and immune and endocrine systems. DPP4 activity differentially regulates glucose homeostasis and inflammation via its enzymatic activity and nonenzymatic immunomodulatory effects. The importance of DPP4 for the medical community has been highlighted by the approval of DPP4 inhibitors, or gliptins, for the treatment of type 2 diabetes mellitus. This review discusses the dysregulation of DPP4 in COVID-19 comorbid conditions; DPP4 activity is higher in older individuals and increased plasma DPP4 is a predictor of the onset of metabolic syndrome. DPP4 upregulation may be a determinant of COVID-19 disease severity, which creates interest regarding the use of gliptins in management of COVID-19. Also, knowledge of the chemistry and biology of DPP4 could be utilized to develop novel therapies to block viral entry of some betacoronaviruses, potentially including SARS-CoV-2.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , COVID-19 , Comorbidity , Dipeptidyl Peptidase 4 , Humans , Pandemics
18.
Sci Rep ; 9(1): 7292, 2019 05 13.
Article in English | MEDLINE | ID: mdl-31086209

ABSTRACT

The ubiquitous intracellular protease dipeptidyl peptidase 9 (DPP9) has roles in antigen presentation and B cell signaling. To investigate the importance of DPP9 in immune regeneration, primary and secondary chimeric mice were created in irradiated recipients using fetal liver cells and adult bone marrow cells, respectively, using wild-type (WT) and DPP9 gene-knockin (DPP9S729A) enzyme-inactive mice. Immune cell reconstitution was assessed at 6 and 16 weeks post-transplant. Primary chimeric mice successfully regenerated neutrophils, natural killer, T and B cells, irrespective of donor cell genotype. There were no significant differences in total myeloid cell or neutrophil numbers between DPP9-WT and DPP9S729A-reconstituted mice. In secondary chimeric mice, cells of DPP9S729A-origin cells displayed enhanced engraftment compared to WT. However, we observed no differences in myeloid or lymphoid lineage reconstitution between WT and DPP9S729A donors, indicating that hematopoietic stem cell (HSC) engraftment and self-renewal is not diminished by the absence of DPP9 enzymatic activity. This is the first report on transplantation of bone marrow cells that lack DPP9 enzymatic activity.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/deficiency , Hematopoietic Stem Cells/physiology , Immune Reconstitution/physiology , Lymphocytes/immunology , Neutrophils/immunology , Animals , Bone Marrow Transplantation , Catalytic Domain/genetics , Cell Differentiation/immunology , Cell Proliferation , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Female , Fetus , Gene Knock-In Techniques , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/radiation effects , Immune System/radiation effects , Liver/cytology , Loss of Function Mutation , Lymphocytes/radiation effects , Male , Mice , Mice, Transgenic , Models, Animal , Neutrophils/radiation effects , Point Mutation , Transplantation Chimera/immunology , Whole-Body Irradiation
19.
Biochim Biophys Acta Mol Basis Dis ; 1865(5): 993-1002, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31007176

ABSTRACT

Hepatocellular carcinoma (HCC) represents ~90% of all cases of primary liver cancer and occurs predominantly in patients with underlying chronic liver disease and cirrhosis. Establishing appropriate animal models for HCC is required for basic and translational studies, especially the models that can recapitulate one of the human disease settings. Current animal models can be categorized as chemically-induced, genetically-engineered, xenograft, or a combination of these with each other or with a metabolic insult. A single approach to resemble human HCC in animals is not sufficient. Combining pathogenic insults in animal models may more realistically recapitulate the multiple etiologic agents occurring in humans. Combining chemical injury with metabolic disorder or alcohol consumption in mice reduces the time taken to hepatocarcinogenesis. Genetically-engineering weak activation of HCC-promoting pathways combined with disease-specific injury models will possibly mimic the pathophysiology of human HCC in distinct clinical settings.


Subject(s)
Carcinoma, Hepatocellular/etiology , Disease Models, Animal , Liver Neoplasms/etiology , Animals , Carbon Tetrachloride/toxicity , Carcinoma, Hepatocellular/pathology , Gene Editing/methods , Humans , Liver Neoplasms/pathology , Xenograft Model Antitumor Assays/methods
20.
Mol Cell Proteomics ; 18(1): 65-85, 2019 01.
Article in English | MEDLINE | ID: mdl-30257879

ABSTRACT

Fibroblast activation protein-alpha (FAP) is a cell-surface transmembrane-anchored dimeric protease. This unique, constitutively active serine protease has both dipeptidyl aminopeptidase and endopeptidase activities and can hydrolyze the post-proline bond. FAP expression is very low in adult organs but is upregulated by activated fibroblasts in sites of tissue remodeling, including fibrosis, atherosclerosis, arthritis and tumors. To identify the endogenous substrates of FAP, we immortalized primary mouse embryonic fibroblasts (MEFs) from FAP gene knockout embryos and then stably transduced them to express either enzymatically active or inactive FAP. The MEF secretomes were then analyzed using degradomic and proteomic techniques. Terminal amine isotopic labeling of substrates (TAILS)-based degradomics identified cleavage sites in collagens, many other extracellular matrix (ECM) and associated proteins, and lysyl oxidase-like-1, CXCL-5, CSF-1, and C1qT6, that were confirmed in vitro In addition, differential metabolic labeling coupled with quantitative proteomic analysis also implicated FAP in ECM-cell interactions, as well as with coagulation, metabolism and wound healing associated proteins. Plasma from FAP-deficient mice exhibited slower than wild-type clotting times. This study provides a significant expansion of the substrate repertoire of FAP and provides insight into the physiological and potential pathological roles of this enigmatic protease.


Subject(s)
Fibroblasts/cytology , Gelatinases/genetics , Gelatinases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Proteomics/methods , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Adipokines/blood , Adipokines/chemistry , Amino Acid Oxidoreductases/blood , Amino Acid Oxidoreductases/chemistry , Animals , Cell Culture Techniques , Cell Line , Chemokine CXCL5/blood , Chemokine CXCL5/chemistry , Endopeptidases , Fibroblasts/metabolism , Gene Knockout Techniques , Humans , Macrophage Colony-Stimulating Factor/blood , Macrophage Colony-Stimulating Factor/chemistry , Mice , Protein Interaction Maps , Proteolysis , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...